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W Why Massively Parallel Computing?

= "Compute is cheap" ... —+f F—0.5mm

90nm chip

64-bit FPU
(to scale)

= ... "Bandwidth is expensive"

= Main memory is ~500 clock

cycles "far away" from the
processor (GPU or CPU)

12mm
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U Moore's Law & The Brick Wall
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@) "More Moore" with GPUs

<N

Peak Double Precision FLOPS Peak Memory Bandwidth

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

-=-NVIDIA GPU -o-x86 CPU -=-NVIDIA GPU -o-x86 CPU
Theoretical Peak Performance Memory Bandwidth

Deployment cases
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i cc B
VR =
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400 SGEMM 5
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200 Matrix Size = 10k~ NVIDIA C2070 vs Xeon X5560
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W GPU Accelerated Libraries ("Drop-In Acceleration)

NVIDIA cuBLAS

GPU Accelerated

Vector Signal
Linear Algebra

Image Processing

~
ROGUE WAVE

SOFTWARE
IMSL Library

ArrayFire Matrix
Computations

G. Zachmann

Massively Parallel Algorithms SS April 2022

= i S0
NVIDIA NPP

Matrix Algebra on
GPU and Multicore e

Sparse Linear C++ STL Features
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@ Operating on a Beating Heart g |

= Only 2% of surgeons will operate on a beating heart
= Patient stands to lose 1 point of 1Q every10 min with heart stopped

= GPU enables real-time motion compensation to virtually stop beating
heart for surgeons

Rogerio Richa
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W When Power Consumption Matters D

= Energy consumption is a serious issue on
mobile devices

= Example: image processing on a
mobile device (geometric distortion +
blurring + color transformation)

= Power consumption:
= CPU (ARM Cortex A8):  3.93 J/frame

= GPU (PowerVR SGX 530): 0.56 J/frame (~14%)
- 0.26 )/frame when data is already on the GPU

= High parallelism at low clock frequencies (110 MHz)
is better than (i.e., "gives you more bang for the buck")
low parallelism at high clock frequencies (550 Mhz)

= Power dissipation increases super-linearly with frequency

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 10
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@J) Another Experiment Relating Computational/Electrical Efficiency

= Task: FEM simulation on CPU vs GPU

= Architectures:

CPU GPU
Intel i7 Tegra ARMv7 Kepler Kepler
4930k Cortex-A15 GK110A GK20A
Clock speed 3.4 GHz 1.9 GHz 1.25 GHz 0.85 GHz
Max Power 130W -2W 250W 2W
Consumption
G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 11
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FPS

= Comparison with respect to FPS:

- GK110A: 155. Fps
GK20A 33.1 Fps

i

i t 11
?‘;H I
iR i .
i S22 ‘g |
| Sy |
o R e I TR R
’ = e °oe =oo ) i 200 460 o0 "800
Frame Frame
= Average energy efficiency:
Intel i7 Tegra ARMv7 Kepler Kepler
4930k Cortex-A15 GK110A GK20A
Efficienc
. Y 2.6 0.06 1.6 0.06
in J/frame
G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 12
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The Trend of Electrical Efficiency of Computation

If a MacBook
Air were as
inefficient as
a 1991
computer,
the battery
would last
2.5 seconds.

\\;‘/

Organization

.«z.g.,w .‘“”

<N

E-X3)

Assessing Trends in the Electrical Efficiency of Computation Over Time" Koomey et al., 2009

17

B



Bremen

W Areas Benefitting from Massively Parallel Algos g

= Computer science (e.g., visual computing, database search)

= Computational material science (e.g., molecular dynamics sim.)
= Bio-informatics (e.qg., alignment, sequencing, ...)

= Economics (e.g., simulation of financial models)

= Mathematics (e.g., solving large PDEs)

= Mechanical engineering (e.g., CFD and FEM)

= Physics (e.g., ab initio simulations)

= Logistics (e.g. simulation of traffic, assembly lines, or supply chains)

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 18
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Some Statistics of the TOP500

TITAN - CRAY X 74 16C 2.200GHZ, CRAY GEMINI
INTERCONNEGJ, NVIDIA K20X

= Our target

platform
Site:
(GPU) iS belng System URL:
used amOng Manufacturer:
Cores:

the TOP500
[Nov 2015]:

Linpack Performance (Rmax)
Theoretical Peak (Rpeak)
Power:

Memory:

Processor:

Interconnect:

Operating System:

DOE/SC/0ak Ridge National Laboratory
http://www.olcf.ornl.gov/titan/

Cray Inc.

560,640

17,590 TFlop/s

27,112.5 TFlop/s

8,209.00 kW

710,144 GB

Opteron 6274 16C 2.2GHz

Cray Gemini interconnect

Cray Linux Environment

RMAX RPEAK POWER
RANK SITE SYSTEM CORES (TFLOP/S) (TFLOP/S) (KW)
1 National Super Computer Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel 3,120,000 33,862.7 54,902.4 17,808
Center in Guangzhou Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon
China Phi 31S1P
NUDT
@ 17,590.0 27,1125 8,209

DOE/SC/0Oak Ridge Natio Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray 560,640
Laboratory Gemini interconnect, NVIDIA K20x
United States

G. Zachmann Massively Parallel Algorithms SS

Source: www.top500.0rg
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Accelerator/Co-Processor System Share

D>

G. Zachmann Massively Parallel Algorithms SS

April 2022

@ NVIDIA Tesla K40

@ NVIDIA Tesla K20x
NVIDIA Tesla K80

@ Intel Xeon Phi 7120P

@ Intel Xeon Phi 5110P

@ NVIDIA 2050

@ NVIDIA 2090

@ NVIDIA Tesla K20

@ Intel Xeon Phi 5120D

@ NVIDIA Tesla K20m

@ Others

Organization
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= Who does parallel computing:

= Note that respondents had to
choose just one area

= "Not specified" probably means
"many areas"

Operating Systems

M Linux

M AIX

[ Cray Linux Environment
M CNK/SLES 9

Il SLES10 + SGI ProPac...
M bullx SUperCOmputer ...
B SUSE Linux Enterprise...
W cNL

13V

G. Zachmann Massively Parallel Algorithms SS April 2022

Application Area

Segments

B Not Specified

M Research

[ Web Services

M Geophysics

B Weather and Climate ...
M Energy

M Defense

B Benchmarking

1713V

M Industry

M Research
Il Academic
M Government
M Vendor

M Classified

Organization
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W The Von-Neumann Architecture

E-X3)

B

<N

= Uses the stored-program concept (revolutionary at the time of its
conception)

= Memory is used for both program instructions and data

2222023 2|

TR

2\

Instruction
Control C o |
P
U

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 22
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W The GPU = the New Architecture @§§

= CPU = lots of cache, little SIMD, a few cores

= GPU = little cache, massive SIMD, lots of cores (packaged into
"streaming multi-processors")

ALU ALU

Control

ALU ALU

B B 8] f 8f 8 8 8

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 23
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W The Stream Programming Model

= Novel programming paradigm that tries to organise data &
functions such that (as much as possible) only streaming
memory access will be done, and as little random access as
possible:

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream := ordered, homogenous set of data of arbitrary type (array)

= Kernel := program to be performed on each element of the input

]

w5

stream; produces (usually) one new output stream

f stream A, B, C;
— — kernelfuncl(input: A,
] A B A C O~
o L S S = & output: B);
—~ — S - —+ — N~
> o] > < i kernelfunc2( input: B,
) ) output: C);

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization
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Flynn's Taxonomy

" Two dimensions: instructions and data

= Two values: single and multiple

data

\

G. Zachmann

/

SISD

single instruction, single data

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n){
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P P2 P
Massively Parallel Algorithms SS

single instruction, multiple data

aw)

April 2022

g vf’ E
M
7. cc =
instructions
MISD
multiple instruction, single data
MIMD
multiple instruction, multiple data
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) x=y"2 alpha=w**3 -
3
C(1)=A(1)*B(1) sum=x-2 zeta=C(i) o
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct M
P1 P2 Pn
Organization 26
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) Some Terminology ‘g

VR =

= Task :=logically discrete section of computational work; typically
a program or procedure

Parallel Task := task that can be executed in parallel by multiple
processors, such that this yields the correct results

= Shared memory :=

= Hardware point of view: all processors have direct access to common
physical memory

= Software point of view: all parallel tasks have the same "picture" of
memory and can directly address and access the same logical memory
locations, regardless of where the physical memory actually exists

= Communication := exchange of data among parallel tasks, e.qg.,
through shared memory

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 27
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= Synchronous communication := requires some kind of
"handshaking" (i.e., synchronization mechanism)

= Asynchronous communication := no sync required

= Example: task 1 sends a message to task 2, but doesn't wait for a
response

= A.k.a. non-blocking communication

" Collective communication := more than 2 tasks are involved

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization
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= Synchronization := coordination of parallel tasks, very often
associated with communications; often implemented by
establishing a synchronization point across tasks

= Example: a task may not proceed further until another task (or all
other tasks) reaches the same or logically equivalent point

= Synchronization usually involves waiting by at least one task, and can
therefore cause a parallel application's execution time to increase
= Granularity := qualitative measure of the ratio of computation to
synchronization

= Coarse granularity: large amounts of computational
work can be done between synchronization points

aw)
aw)

= Fine granularity: lots of synchronization points
sprinkled throughout the computational work

I communication
[ computation

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 29
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= Observed Speedup := measure for performance of parallel code

wall-clock execution time of best known sequential code
speedup =

wall-clock execution time of your parallel code

= One of the simplest and most widely used indicators for a parallel
program's performance

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization
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W Amdahl's Law g

" Quiz:
= Suppose we want to do a 5000 piece jigsaw puzzle

= Time for one person to complete puzzle: n hours

= How much time do we need, if we add 1T more
person at the table?

= How much time, if we add 100 persons?

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 31
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W@ Amdahl's Law (the "Pessimist")

D)
.
<N

za
B

= Assume a program execution consists of two parts: P and §, where
P = time for parallelizable part
§ = time for inherently sequential part

= W.log.setP+S5=1

20.00

//
= Assume further that the 1800 //
Parallel Portion
time taken by N processors 1000 7 B
14.00 90%
workingon Pis P 1200 / S
N = /
= Then, the maximum speedup  £*° 1T
8.00
achievable is . V1
/
]_ 4.00 7//__—__
speedup,(N) = 5 20 |
1-P)+g |
0.00
"N v e 9§ 3 8§ 8

o~ n o

1024
2048
4096
8192
16384
32768
65536

Number of Processors

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 32
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= Graphical representation of Amdahl:

(You can squeeze the parallel part as much as you like, by throwing more
processors at it, but you cannot squeeze the sequential part)

G. Zachmann

Massively Parallel Algorithms

SS

April 2022

Organization
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= With conventional parallelization,

the speedup can be even worse  «

£ =0.99 o
than Amdabhl's prediction! QZZ r sl
= Work is distributed among a gjz ///:g;i':"mw
number of processes = = E—
communicating with each other, 10 // -
e.g., via message passing 0 50 100 150 200 250

Number of processes / processors
= Due to parallel overhead

= Parallel Overhead := amount of time required to coordinate parallel
tasks, as opposed to doing useful work; can include factors such as:
task start-up time, synchronizations, data communications,
scheduling, 1/0, etc.

= Scalable problem := problem where parallelizable part P increases
with problem size

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 34
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) Gustafson's Law (the "Optimist") §

= Assume a family of programs, that all run in a fixed time frame T,
with

= 3 Sequential part S, Sy (seq) | Py(par) | Pz(par) | S;(seq)

= and a time portion Q for parallel execution,
=T=5+Q

S1(seq) | Py(par) | S:(seq)

P2 (par)

= Assume, we can deploy N processors,

Si(seq) | Py(par) | Pz(par) | Ps(par) | P,(par) | Sy(seq)

working on larger and larger problem
sizes in parallel

T

Si(seq) | Py(par) [ Sz(seq)
= So, Gustafson's speedup is .
z(par
P4 (par)
S5+ QN . e
speedup(N) = > 00, with N — oo
S+ @
G. Zachmann Massively Parallel Algorithms SS April 2022
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Examples of Easily Parallelizable Problems

= Compute an image, where each pixel is just

a function of its coordinates

= E.g. Mandelbrot set

= Question: is rendering a polygonal scene

one of this case?

= Such parallel problems are called
"embarrassingly parallel”

= There is nothing embarrassing about them ©
= Other examples:
= Brute-force searches in cryptography

= Large scale face recognition

= Genetic algorithms

= SETI@home , and other such distributed comp.

G. Zachmann Massively Parallel Algorithms SS April 2022

Organization
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W Example of Inherently Sequential Algorithm

= Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use
of the formula:
F(k+2) = F(k+1) + F(k)

" The problem here is data dependence
= This is one of the common inhibitors to parallelization
= Common solution: different algorithm

= Other algorithm for Fibonacci?

AT K AT BT
e N

Fn — — =
1— 5 1
b = Qf —1—p=—- ~ —0.6180339887
0
1+ /5
= +2‘f ~ 1.61803 39887

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 37
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W Example of Inherently Sequential Problem ()

= RSA encryption

= One RSA operation with a 1k-bit key requires roughly 768 modular

multiplications of large integers, and each multiplication is dependent
on the result of the previous multiplication

= Trivial parallelizations are:

- Parallelize the individual multiplication operation (via, e.qg., FFT)

- Encrypting each packet of the message in parallel

= If you find a non-trivial parallel algorithm for RSA, please talk to me ©

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization
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W Another Taxonomy for Parallelism

A

= Pipeline parallelism := between
producers and consumers

ata Parallel
== = Task parallelism := explicit in algorithm;

= each task works on a different
Scatter branch/section of the control flow
graph, where none of the tasks' output
reaches the other task as input (similar

to MIMD)

Pipeline

= Sometimes also called thread level
parallelism

= Data parallelism := all data packets
have to be treated same/similarly

\ ~ (e.g. SIMD)
i Task

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 39
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= An example of data (level) parallelism:

do foo parallel( array d ):
if myCPU = "1".:
lower limit := 0
upper limit := d.length / 2
else if myCPU = "2":
lower limit := d.length/2 + 1
upper limit := d.length

for i from lower limit to upper limit:
foo( d[1i] )

do foo parallel<<on both CPUs>>( global array )

= This is what we are going to do mostly in this course!

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 40
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= Examples of pipeline parallelism: ‘

. o Input Assembly |
= The graphics (hardware) pipeline

= The app-cull-draw (software) pipeline

‘ Primitive Setup |

Mmo|4 auljadid

‘ Rasterization |

‘ Output Merging |

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization
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@ A word about instruction level parallelism (ILP)

" Mostly done inside CPUs / cores
= |.e., this is parallelism on the hardware level
= Done by computer architects at the time the hardware is designed

= Example:
l: e=a+b
2: £f=c+ d
3: g=e * £

= Lines 1 & 2 (ADD/MOV instr. for the CPU) can be executed in parallel

= Techniques employed in CPUs to achieve ILP:
= |Instruction pipelining
= Qut-of-order execution

= Branch prediction

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 42
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W Which Parallelism Paradigm in Daily Life? ‘

Answer: all of them!

Part of the o= _
computation graph for game engine of ' .-

Battlefied: Bad Company

provided by DICE

G. Zachmann Massi'
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= Data parallelism:

= Task parallelism:

G. Zachmann Massively Parallel Algorithms

SS

April 2022

Organization
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" Pipeline parallelism:

App App
App frame 1 App frame 2 App frame 3 App frame 4

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 45
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W Reconciling Task Parallelism

= Typical game workload (subsystems in % of overall time "budget"):

= Input, Miscellaneous: 5%

= Physics: 30%

= Al, Game Logic: 10%
= Graphics: 50%

= Audio: 5%

Physics

Al

Graphics

Au

G. Zachmann

Massively Parallel Algorithms

SS

April 2022
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Parallelism Anti-Pattern

= Naive solution: assign each subsystem to a thread

thread O In j-----mmmmm e L T
thread 1 Physics ~ f----mmmmmmmemmoo oo Physics ~ poommmomommooooooees
thread 2 Al [ L
thread 3 Graphics Graphics
| fra'me |
= Problems

= Communication/synchronization

= Load imbalance

= Preemption could lead to thrashing

= Don't do this

G. Zachmann

Massively Parallel Algorithms SS April 2022
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= Better: group subsystems into threads with equal load

thread 0 ----| | Physics Al | A Physics Al | A |-
thread 1 ---- Graphics Graphics
fra'me
= Problems

= Communication/synchronization

= Poor scalability (4, 8, ... threads)

48
G. Zachmann Massively Parallel Algorithms SS April 2022
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W Enough Classifications ... Demo Time!

Comparison between single core, multi-core, GPU

e OO0 OpenCL N-Body Simulation

) |

-; 7:/
9

Relative Perf

SIM: Vector Single Core CPU

~/Code/MassPar_examples_CUDA_and_OpenCL/OpenCL/NBody_Simulation/

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization

. cc B
VR =

49



@ More Examples: Particle / N-Body Sim. (e.g., Galaxy Simulations)

Three Galaxies
Collision

2.4m particles

)i( G. Zachmann Massively Parallel Algorithms SS April 2022
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G. Zachmann

CUDA Particles (16384 particles): 97.4 fps

~/Code/MassPar_examples_CUDA_and_OpenCL/CUDA/particles

Massively Parallel Algorithms SS April 2022

Organization
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Simulating 6
Simulation mof
F1 for help

G. Zachmann Massively Parallel Algorithms

SS

April 2022

Organization
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W lllustrated History of Parallel Computing %’§

..‘ N4

‘ .1.‘1
“"“ " " .-
4 - . a
1 Y
L &>
T
RN J

{3 Tutorial CUDA, 2008, Cyril Zeller, NVIDIA Developer Technology

G. Zachmann Massively Parallel Algorithms SS April 2022 Organization 53



